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A new method of visualisation of bonding in molecules is introduced. The method is
based on the analysis of Fermi holes associated with conditional probabilities of finding one
electron of the pair provided the second, reference, electron is localised in a certain molecular
region. Based on this analysis it is possible to get a clear and highly visual insight into
the structure of molecular fragments (functional groups) in molecules. In addition to this
visualisation, the new approach opens the possibility of the new definition of atomic and
group valence and, also, can be applied as a new means of the quantitative characterisation
of similarity of structural fragments in the series of related molecules.

1. Introduction

The concept of chemical bond is one of the most fundamental concepts of the
whole modern chemistry [36]. Despite numerous attempts to elucidate the factors
responsible for the strength and the existence of chemical bonds [4,5,9,13–15,23,25,
26,49,52] the nature of the chemical bond is still not completely understood. This is
especially true of the mutual relation or compatibility of the classical Lewis picture
of chemical bond as composed of shared electron pair [27] and the quantum chemical
description based on the concept of many electron wave function. The first attempts in
this respect were based on the idea of the so-called localised orbitals [12,18,19,31,35,
37,38] and even if these orbitals have the basic features attributed to chemical bonds,
namely the localisation in a certain region of space and the approximate transferability,
this approach cannot be regarded as completely satisfactory from the theoretical point
of view. This is due to the fact that the localised orbitals, like any other orbitals, are
only one electron quantities and as a such they are inherently unable to say anything
about the behaviour of electron pairs. It is thus clear, that any attempt at the evaluation
of the role of electron pairing in chemical bonds has to be based on inherently two-
electron quantities. The simplest of such quantities is the pair density and several
attempts based on the analysis of this density was recently reported in the literature
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[9,10,17,23–25,50,51,54]. Among them it is necessary to mention the studies by Bader
[9] and Julg [25] who came with the idea to identify the chemical bond with the region
of small fluctuation of electron pair. Unfortunately, neither this approach was found
to be entirely satisfactory and, consequently, the electron pair model of chemical bond
was seriously questioned [2]. Despite this discouraging conclusion the situation is not,
however, as desperate as it seemed to be since as we have recently shown [48], the
criterion of low pair fluctuation is not completely satisfactory. This can very simply be
demonstrated by a simple example of H2 molecule for which the pair fluctuation over
the region involving both atoms is identically zero irrespective of the inter-atomic
distance, i.e., both for bond lengths close to equilibrium where the bond certainly
exists and for the completely dissociated state without any bond. This implies that
the low fluctuation criterion is not a good measure of the existence of chemical bond
and cannot thus serve as a basis for the evaluation of the role of electron pairing in
chemical bonding. Much more convenient criterion for the evaluation of the accuracy
of the Lewis electron pair model was found to arise from the recently introduced
formalism of the so-called pair population analysis [11,40,41,46]. The basis of this
criterion is the interesting normalisation criterion (1), which says that the total sum
of mono- and biatomic effective pair populations equals N/2 which for the molecule
with N electrons is just the number of bonds plus free and core electron pairs:∑

A

Πeff
A +

∑
A<B

Πeff
AB = N/2. (1)

The important and interesting feature of this relation is that it can frequently be sim-
plified to the form (2)

∑
A

Πeff
A +

bonded∑
A<B

Πeff
AB
∼= N/2, (2)

where the summation of biatomic terms runs only over pairs of atoms directly bonded
in the classical formula. In this way the accuracy of the Lewis model could straight-
forwardly be checked and we found [48] that it is usually high enough to represent a
good basis for the interpretation of the structure.

Stimulated by this result we decided to pursue the idea of the analysis of the
pair density and our aim in this study is to show that useful structural information
can be extracted not only from the formalism of the pair population analysis but also
from other closely related approaches. In the following part some examples of such
approaches will be given.

2. Theoretical

The simplest quantity which is of fundamental importance for any attempt to eval-
uate the role of electron pairing in chemical bonds is the pair density which is defined
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as a diagonal element of the (spin-less) second density matrix [28,32] ρ(r1, r2|r′1, r′2),

ρ(r1, r2) = ρ(r1, r2|r1, r2) = N (N−1)/2
∫

Ψ2(1, 2, . . . ,N ) dσ1 dσ2 dx3 . . . dxN , (3)

where the integration is performed over the spin coordinates of the first two electrons
and over the spin and space coordinates of remaining N − 2 electrons.

In spite of considerably reducing the extent of information compared to the wave
function, this density is still rather complex quantity and in order to extract the desired
information from it, it has to be subjected to further mathematical processing. One of
such methods is, e.g., the recently proposed pair population analysis. In this study we
are going to introduce another kind of analysis which is based on the exploitation of
conditional probabilities describing the distribution of one electron of the pair provided
the second, reference, electron is fixed in a certain position or region. This conditional
probability, with the reference electron fixed in a point r2 is given by

Pr2 (r1) = 2ρ(r1, r2)/ρ(r2). (4)

In addition to conditional probabilities themselves it is also useful to analyse the closely
related quantities (5), the so-called Fermi holes [7,29,30,55]:

hr2 (r1) = ρ(r1)− Pr2(r1). (5)

These quantities were introduced long time ago by Wigner in solid state physics [55]
and only relatively recently were used also in chemistry [7,29,30]. Thus, e.g., Luken
[29,30] demonstrated that these holes are not very sensitive to the precise location
of the reference electron and if this position is fixed near the midpoint of the inter-
nuclear axis, the resulting pictures closely resemble the localised orbitals corresponding
to individual bonds. In this way the important role of electron pairs in chemical bonds
was directly confirmed. Similar conclusion were then also obtained in our recent
study [47].

The fixation and, consequently, the localisation of the reference electron in a
single point is not, however, very compatible with the quantum mechanical uncertainty
principle. Much more useful and realistic picture would result if the position of the
reference electron is not fixed in a point but is allowed to vary within a certain region Ω.
In this case the original equation (4) becomes

fΩ(r1) =

∫
Ω 2ρ(r1, r2) dr2∫

Ω ρ(r2) dr2
. (6)

The conditional probabilities satisfy the universal normalisation condition (7) which
holds for the arbitrary shape of the region Ω:∫

fΩ(r1) dr1 = N − 1. (7)

Parallel to Fermi hole (5) it is also useful to define an “integrated” Fermi hole (8):

hΩ(r1) = ρ(r1)− fΩ(r1), (8)
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which identically satisfies the normalisation∫
hΩ(r1) dr1 = 1. (9)

Although the validity of the normalisation is not influenced by how the region Ω
is actually chosen, there is a certain definition which is of special importance for
chemistry. This definition is based on the virial partitioning of the function ρ(r1)
proposed by Bader [3]. According to this partitioning the molecular space is divided
into regions associated with individual atoms. Adopting this type of partitioning it is
reasonable to identify the regions Ω with some of the atomic regions of the Bader’s
partitioning.

In addition to restricting the position of the reference electron into single atomic
region it is also useful to investigate the conditional probabilities and Fermi holes
for some other specific forms of Ω. Thus, e.g., one of such possibilities would be
to analyse the biatomic regions defined as a union of neighbouring atomic regions
especially for the classically bonded atoms. In certain cases even more complex forms
of the region Ω can also be useful to analyse. The important feature of this analysis is
that these holes associated with the region Ω are predominantly localised in the same
region so that the information they contain is to a considerable extent specific just for
the given region (functional group). As we shall see bellow, this may be especially
useful for the visualisation of the structure of molecular fragments and, also, for the
evaluation of similarity of these fragments (functional groups) in a series of structurally
related molecules. Before this becomes possible it is necessary to introduce yet some
other related quantities and, also, to specify the methods of their analysis

First of them is based on the idea of the Mulliken population analysis [34]. The
quantity which is analysed is not, however, the total electron density but the “charge
weighted” Fermi hole which is defined by

gΩ(r1) = NΩhΩ(r1), (10)

and where the proportionality factor equals to the number of electrons in a region Ω.
The philosophy underlying the introduction of these “charge weighted” Fermi

holes is the following. The “normal” Fermi holes are derived from the conditional
probabilities describing the distribution of one electron of the pair provided the second,
reference, electron is localised in a region Ω. The localisation of one and only one
electron in a region Ω is, however, rather artificial act which does not reflect the fact
that in a real molecule the region Ω is generally populated not by one but by NΩ
electrons, where NΩ is given by ∫

Ω
ρ(r1) dr1 = NΩ. (11)
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This implies that in order to correct for the statistical probability of distribution of elec-
trons in a molecule, the “normal” Fermi holes are to be multiplied by a factor NΩ. As
a consequence, the “charge weighted” Fermi holes satisfy the universal normalisation∫

gΩ(r1) dr1 = NΩ. (12)

This identity can be then decomposed into individual atomic populations exactly as in
the standard Mulliken population analysis and the resulting populations will be shown
to be closely related to the classical concept of valence.

Another general methodology of the analysis of “charge weighted” Fermi holes
arises from the fact that the matrix GΩ representing this quantity in AO basis can
be diagonalised exactly like the charge density-bond order matrix. Since, as stressed
above, the Fermi holes associated with a region Ω are predominantly localised in
the same region, the eigenvalues and eigenvectors resulting from such diagonalisation
provide a specific information about the structure of corresponding fragment. Thus,
e.g., if the region Ω is composed of atomic region of a single atom, the diagonalisation
of the matrix G provides the valence state of the atom in a molecule. On the other
hand, for more complex regions corresponding, e.g., to certain functional groups, the
diagonalisation of the matrix G closely reflects the classical picture of that fragment as
composed of localised electron pairs corresponding to bonds, free and/or core electron
pairs and some unsaturated free valences. In addition to this, the eigenvalues resulting
from the diagonalisation of the “charge weighted” Fermi holes can hopefully be used
as a new efficient basis for the classification and the systemisation of similarities in
molecular structure. In the following part some examples of this practical use of these
holes will be discussed.

3. Results and discussion

Although the above methodology is formulated quite generally and can be applied
at any level of theory, the practical applications discussed in this study are based on
some simplifying assumptions. First of the concerns the pair densities which, for sim-
plicity, are derived from semiempirical MO methods at SCF level. This restriction was
motivated mainly by the simplicity with which the above analysis can be implemented
and subsequently tested at this particular level. Moreover, we believe, that at this level
the conclusions can still be regarded as reliable enough and certainly they provide a
good starting point prior to eventual extension to higher levels of the theory. Second
of the approximations concerns the integration over the Bader’s regions. Because of
unavailability of programs for such an integration to us we used, as in previous cases
[44,48] the approximation replacing the direct Bader’s integration by appropriately
restricting the summation over the basis functions. Within this approach the electron
is assumed to be in the region of the atom A if it resides in the orbital centred on
this atom. Using this approach, combined with the usual ZDO approximation used
in semiempirical methods, the general formula (6) for the conditional probability over
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the region Ω can be rewritten in the form (13), in which PΩ denotes the total electron
density in this region:

fΩ(r1) =

∫
Ω 2ρ(r1, r2) dr2

PΩ
. (13)

The approach was applied to a series of simple molecules restricted, in this
introductory study, only to structures well represented by the classical Lewis model of
two-center two-electron (2c-2e) bonds. The calculations were performed by standard
MNDO method [16] implemented in the MOPAC package [53] and in all cases the
molecules were considered in completely optimised molecular geometries.

Let us discuss now the results of our calculations. As a first example let us
introduce the alternative definition of atomic and group valence based on the analysis
of the “charge weighted” Fermi holes. Thus, e.g., if these holes are represented in AO
basis by the matrix GΩ then the atomic valence of the group X can be defined as

VX = 2
∑
B/∈X

B∑
µ

(GX)µµ. (14)

The simplest situation is when the group X is composed of a single atom. In this
case the resulting quantity is the atomic valence of the corresponding atom. Values of
atomic and group valences calculated according to (14) for a series of several simple
molecules are included in table 1. Here it is interesting to remark that at simple SCF
level the calculated atomic and group valences are identical with the valences resulting
from the Jug’s definition [20,22,45]. Such an equivalence would, however, disappear at
correlated post SCF level and it would be certainly interesting to test the new definition
of valence for correlated pair densities. This would not only allow to extend the defin-
ition of valence to correlated post-SCF level of theory but also to test the applicability
and the very usefulness of the valence concept outside the scope of SCF approximation.

In addition to opening a possibility of the alternative definition of the atomic and
group valence, the analysis of the “charge weighted” Fermi holes brings also the pos-
sibility of the extremely straightforward and visual insight into the molecular structure.
Such an insight is based on the diagonalisation of the matrix GΩ in AO basis. The
result of this diagonalisation is several nonzero eigenvalues (together with the corre-
sponding eigenvectors) from which the molecular structure can straightforwardly be
deduced. Thus, e.g., in the case of CH3-fragment in CH4 molecule, the diagonalisation
of the matrix GΩ gives four nonzero eigenvalues of which there are exactly equal to 2
and the remaining one is close to 1. This suggests that six of the total number of elec-
tron within the fragment are coupled to pairs and the remaining roughly one remains
uncoupled. Closer inspection of the corresponding eigenvectors demonstrates that the
those with eigenvalue 2 correspond to individual C–H bonds and the remaining, singly
occupied eigenvector corresponds to unsaturated “free valence” of the CH3-group. We
can thus see that the analysis of the Fermi hole associated with a fragment provides a
picture completely consistent with the classical structural formula.



R. Ponec / Electron pairing and chemical bonds 329

Table 1
Atomic and group valences from the analysis of Fermi holes for a series of

simple molecules.

Molecule Group Valence

CH4 C 3.921
H 1.000
CH 2.960
CH2 1.987
CH3 1.000

NH3 N 2.965
H 0.994
NH 1.983
NH2 0.994

H2O O 1.940
H 0.973
OH 0.973

After having discussed the simple case of CH3-fragment let us analyse also other
possible fragments derivable from CH4, NH3 and H2O. The only what is necessary
is to include the appropriate atoms into the region Ω and to generate and diagonalise
the corresponding “charge weighted” Fermi hole. The diagonalisation yields four
nonzero eigenvalues of which those, corresponding to X–H bonds and free electron
pairs existing in the fragment, are exactly equal or very close to 2 while eigenval-
ues corresponding to “unsaturated free” valences are close to 1. This suggests the
possibility to introduce simple topological definition of group valence as a number
of eigenvectors with eigenvalues close to 1. These topological valences are, like the
classical valences, only integer numbers and as it is possible to see from table 2 they
completely coincide with the classical valences of the group. Such a result is not, of
course, very interesting in this particular case but since the formalism is completely
general it can equally well be applied to other more complex systems where the classi-
cal structural theory is difficult to use. Such can be, e.g., the case with transition metal
complexes where the above formalism can be used as an alternative to the qualitative
analysis of the so-called isolobal analogy [21].

In addition to allowing the simple extraction of the structure from the pair density,
the diagonalisation of the “charge weighted” Fermi holes is also useful as a new
means of the evaluation and the classification of similarity [1,6,8,33,39,42] of various
structural fragments (functional groups) in a series of related molecules. As an example
let us evaluate the similarity of CH3-fragment in a series CH3–Li, CH3–H, CH3–CH3,
CH3–NH2, CH3–OH, CH3–F. Like in previous cases the diagonalisation of the “charge
weighted” Fermi holes yields four non-zero eigenvalues of which three (corresponding
to three C–H bonds in the fragment) are again equal or very close to 2. This clearly
demonstrates that the structure of the CH3-group in all the molecules is essentially
identical. The only place where the effect of varying molecular environment becomes
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Table 2
Topological valence of several functional groups from the analysis of the Fermi

holes.

Molecule Fragment Topological valence

CH4 C 4
CH 3
CH2 2
CH3 1

NH3 N 3
NH 2
NH2 1

H2O O 2
OH 1

Table 3
Similarity of CH3-fragment in a series of molecules CH3X.

Molecule Similarity index SX,H

CH3Li 0.441
CH4 0.0
CH3–CH3 0.019
CH3–NH2 −0.094
CH3–OH −0.175
CH3–F −0.282

more important is on the eigenvalue corresponding to remaining “unsaturated free”
valence which systematically decrease on going from CH3–Li to CH3–F. We propose
here to use this variation as a simple measure of molecular similarity. Thus, e.g., if
we take methane as a reference standard then the similarity (or dissimilarity) of the
CH3-fragment in CH3–X can be defined as

SX,H = ηF
X − ηF

H, (15)

a difference between the eigenvalues corresponding to “unsaturated free” valence in
a molecule CH3–X and the reference methane. The resulting values of this index
are summarised in table 3 and as it is possible to see from the figure 1, the index
reasonably correlate with the Pauling electronegativity of the atom (group) X.

Such a simple index is, of course, only one of the possibilities how to measure the
similarity of various fragments and more detailed investigation of possible generalisa-
tions is currently under study in our laboratory and we believe that further systematic
exploitation of Fermi holes will be found useful in the evaluation and systemisation
of molecular similarity.

Summarising the above results it is perhaps possible to conclude that in addition
to opening the new ways for the quantitative characterization of molecular similarity,
the above introduced analysis of the Fermi holes brins also new interesting possibilities
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Figure 1. Calculated dependence of similarity of CH3-fragment in CH3X on the Pauling electronegativity
of the central atom in X.

for the theoretical interpretation and visualization of molecular structure and we believe
that further systematic studies of these holes are worth pursuing. In this connection
it is, of course, fair to say that in view of the wide potential benefit from these
analyses, the extension to more sophisticated levels of the theory would be desirable.
One such study aiming at the generalization to more reliable ab-initio description is
currently being performed in our laboratory. Another important and especially from the
theoretical point of view attractive generalization would be to analyse the conditional
probabilities and Fermi holes derived from the correlated pair densities but even if
first such attempts were recently reported [43], the low availability of correlated pair
densities from existing quantum chemical programs prevents so far wider systematic
exploitation of the presented methodology in this direction.
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